Reduction of m-regular noncrossing partitions

نویسندگان

  • William Y. C. Chen
  • Eva Yu-Ping Deng
  • Rosena R. X. Du
چکیده

In this paper, we present a reduction algorithm which transforms m-regular partitions of [n] = {1, 2, . . . , n} to (m−1)-regular partitions of [n − 1]. We show that this algorithm preserves the noncrossing property. This yields a simple explanation of an identity due to Simion-Ullman and Klazar in connection with enumeration problems on noncrossing partitions and RNA secondary structures. For ordinary noncrossing partitions, the reduction algorithm leads to a representation of noncrossing partitions in terms of independent arcs and loops, as well as an identity of Simion and Ullman which expresses the Narayana numbers in terms of the Catalan numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON 2-REGULAR, k-NONCROSSING PARTITIONS

In this paper we prove a bijection between 2-regular, k-noncrossing partitions and k-noncrossing enhanced partitions. Via this bijection we enumerate 2-regular, 3-noncrossing partitions using an enumeration result [1] for enhanced 3-noncrossing partitions. In addition we derive the asymptotics for the numbers of 2-regular, 3-noncrossing partitions using the BirkhoffTrijtzinky analytic theory of...

متن کامل

ON k-NONCROSSING PARTITIONS

In this paper we prove a duality between k-noncrossing partitions over [n] = {1, . . . , n} and k-noncrossing braids over [n − 1]. This duality is derived directly via (generalized) vacillating tableaux which are in correspondence to tangled-diagrams [6]. We give a combinatorial interpretation of the bijection in terms of the contraction of arcs of tangled-diagrams. Furthermore it induces by re...

متن کامل

Pairs of noncrossing free Dyck paths and noncrossing partitions

Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n and noncrossing partitions of [2n + 1] with n + 1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.

متن کامل

A Combinatorial Framework for Rna Tertiary Interaction

In this paper we show how to express RNA tertiary interactions via the concepts of tangled diagrams. Tangled diagrams allow to formulate RNA base triples and pseudoknotinteractions and to control the maximum number of mutually crossing arcs. In particular we study two subsets of tangled diagrams: 3-noncrossing tangled-diagrams with l vertices of degree two and 2-regular, 3-noncrossing partition...

متن کامل

Chains in the lattice of noncrossing partitions

The lattice of noncrossing set partitions is known to admit an R-labeling. Under this labeling, maximal chains give rise to permutations. We discuss structural and enumerative properties of the lattice of noncrossing partitions, which pertain to a new permutation statistic, m(a), defined as the number of maximal chains labeled by 0. Miibius inversion results and related facts about the lattice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005